

1

Game Theory

- "Game"

Ernst Zermelo (1913):
In any chess game that does not end in a draw, a player has a winning strategy

- Mathematical theory of strategic decision making John von Neumann (1944)

2

Applications

- Application: market equilibria
- Predict where the market is heading to
- Mechanism design and auctions
- Google and Yahoo apply game-theoretic techniques
- Keyword search auction
- Spectrum allocation among wireless companies

3

Applications

Understanding the Internet: "Selfish routing" is a constant-factor off from optimal

4

Applications

- Load balancing and resource allocation
- p2p and file sharing systems
- Cryptography and security
- Social and economic networks, etc.

5

6

7

Spheres Of Legislation: Polarization And Most Influential Nodes In Behavioral Context

Complex Networks 2019, Portugal.
With Andrew Phillips'19 \&
Luca Ostertag-hill'20

9

11

Example: Split or Steal

https://www.youtube.com/watch?v=yM38mRHY150

- Rules of the game
- Outcome

Game model of split or steal

- One-shot game (simultaneous move)
- 3 components
- Players
- Strategies/actions
- Payoffs

13

	Lucy		
Tony	Payoff matrix	Split	Steal
	Split	\$33K, \$33K	Frust., \$66K
	Steal	\$66K, Frust.	\$0, \$0

Why did they end up with 0 ?

Lucy			
TonyPayoff matrix	Split	Steal	
Tolit	\$33K, \$33K	Frust., \$66K	
	Steal	$\$ 66 \mathrm{~K}$, Frust.	$\$ 0, \$ 0$

Nash Equilibrium
Everyone plays their best response to others simultaneously

John F. Nash Nobel Prize, 1994

Best response

- Best strategy of a player, given the other players' strategies
- Always exists!

(Strictly/weakly) dominant strategy

- A strategy of a player that is (strictly/weakly) better than any of their other strategies, no matter what the other players do
- Does not always exist

17

Famous example:
prisoner's dilemma

Suspect 2

Suspect 1 \begin{tabular}{|c|c|c|}

\hline | Payoff |
| :---: |
| matrix | \& Not Confess \& Confess

\cline { 2 - 4 } | Not |
| :---: |
| Confess | \& $-1,-1$ \& $-10,0$

\cline { 2 - 4 } \& Confess \& $0,-10$
\end{tabular}

Drug usage in cycling

Cyclist 2

Cyclist 1	Payoff matrix	No Drugs	Drugs
	No Drugs	3,3	1,4
	Drugs	4,1	2,2

19

Checkpoint

- What is the difference between a dominant strategy and a best response?
- What is the difference between weakly and strictly dominant strategies? Will a player always have one?

Nash equilibrium (NE)

- A joint strategy (one strategy/player) s.t. every player plays their best response to others simultaneously
- (Equiv.) A joint strategy s.t. no player gains by deviating unilaterally
- Useful for checking whether a joint strategy is a NE

Pure-strategy Nash equilibrium (PSNE)

- Players do not use any probability in choosing strategies as they do in "mixed-strategy"
- Every player plays their best response to others simultaneously

Checkpoint

- What is the difference between best response and PSNE?
- Is there a connection between dominant strategy and PSNE?

26

Quiz

- Watch the following clip from the movie a Beautiful Mind portraying Nash's discovery of NE https://www.youtube.com/watch?v=LJS7lgvk6ZM
- Is this actually a Nash equilibrium?
- Detailed answer: A blog post (also posted on the class website)

Misconceptions

- Equilibrium signifies a tie/draw/balance
- Equilibrium outcome is the best possible outcome for all players (A Beautiful Mind)
- Self-interested players want to hurt each other

30

Questions

- Does NE always exist? (Answer later ...)
- If it exists, is it unique?

Penalty kick game (continued)

42

Penalty kick game (real-world)

- "Professionals Play Minimax"- Ignacio Palacios-Huerta

Equilibrium probabilities (computed by solving equations) match real-world probabilities from data!

https://bleacherreport.com/articles/755195-champions-league-08-analyzing-one-of-the-most-iconic-shootouts-in-history

Von Neumann's Theorem (1928)

- Every finite 2-person zero-sum game has a mixed equilibrium

John von Neumann (1903-1957)

Theorem of Nash (1950)

Every finite game has an equilibrium in mixed strategies

John F. Nash (1928-2015)
Nobel Prize, 1994

Key take-away messages

- Players act simultaneously, but NE outcome is stable in the sense that there is no incentive for unilateral deviation.
- There is always at least one MSNE (including PSNE). A PSNE is not guaranteed.
- The concept of NE doesn't say how NE happens.
- NE is not a balance or tie. It is often times a socially-inefficient outcome.

53

